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Nash Equilibrium 
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Abstract— In implementing cognitive radio networks, transmit-power control is one of the key tasks of the cognitive cycle and plays a big 
role in carrying out spectrum sharing. In this work the transmit-power control of a CDMA cognitive radio network is modeled as a non-
cooperative game-theoretic problem. The Iterative Water-Filling algorithm is implemented using the best response to the previous play in 
an attempt to arrive at the Nash Equilibrium. The characteristics of the convergence and of the Nash Equilibrium are studied and of special 
interest is the Pareto-optimality. It is found that the Nash Equilibrium is not Pareto-optimal and a method is proposed and implemented to 
achieve a power vector which is Pareto-superior to the power vector of the Nash Equilibrium and which yields a higher utility. 

Index Terms— Cognitive Radio, Iterative Water-Filling, Nash Equilibrium, Non-Cooperative Game Theory, Pareto Optimality, Software-
defined radio, Transmit-Power Control. 

——————————      —————————— 

1 INTRODUCTION                                                                     
he electromagnetic radio spectrum is a natural resource 
and its shortage has become more apparent in recent 
years. This shortage has been due to the physical scarcity 

of the radio spectrum as well as to the proliferation of wireless 
devices. However, a deeper analysis of this shortage has re-
vealed that despite the physical scarcity, there is a lot of ineffi-
ciency in the spectrum utilization. It has been found that some 
frequency bands in the spectrum are largely unoccupied most 
of the time whereas some bands are only partially occupied 
[1]. The underutilization of the electromagnetic spectrum 
gives rise to of spectrum holes, which are bands of frequencies 
assigned to licensed users, but which, at particular times and 
specific geographic locations are not utilized by those users 
[2]. In order to increase the efficiency of the utilization of the 
spectrum resource, more flexible and dynamic spectrum man-
agement techniques and regulations are required.  

Cognitive radio was proposed by Mitola [3] as a novel 
technique to achieve flexible spectrum management and 
thereby increase spectrum efficiency [2]. This research devel-
ops a model for the implementation of distributed transmit-
power control in a cognitive radio network using game-
theoretic analysis techniques. Game theoretic analysis offers a 
set of mathematical tools that help deal with the phenomenon 
of competition that can arise in spectrum sharing in a distrib-
uted environment and thus make stability possible. Of par-
ticular importance is the convergence to the Nash Equilibrium, 
which represents a stable operating point in a game-theoretic 
setting. The study looks at the Pareto optimality of the Nash 
Equilibrium and proposes an algorithm for finding a Pareto 
superior power vector to the Nash Equilibrium, which has the 
advantage of yielding a higher utility when compared to the 

solution at the Nash Equilibrium. The method employed in 
this research also offers some improvements over techniques 
such as the use of pricing [4][5] to achieve Pareto improve-
ment.  

The rest of the paper is structured as follows: Section 2 gives 
an overview of cognitive radio, focusing on the cognitive task of 
transmit-power control. Section 3 explains some fundamentals 
of game theory. Section 4 details the system model used and 
explains how transmit-power control is modeled in a game-
theoretic setting. It explains the algorithm used to arrive at the 
Nash Equilibrium and proposes an algorithm to improve on the 
Pareto efficiency of the Nash Equilibrium. Section 5 presents 
some experimental results and finally, Section 6 gives the con-
clusions and future work. 

2 COGNITIVE RADIO 
Cognitive radio is an extension to Software Defined Radio 
(SDR) and is an intelligent wireless communication system 
that is aware of its surrounding environment and adapts its 
internal states to statistical variations in the incoming RF 
stimuli by making corresponding changes in certain operating 
parameters in real-time [2]. Cognitive radio can change its 
transmitter parameters based on interaction with the envi-
ronment in which it operates [6] and thus increase spectral 
efficiency and capacity. This is achieved by exploiting spec-
trum holes [2]. 

2.1 The Cognitive Cycle 
The cognitive cycle includes the basic operations necessary for 
the realization of Cognitive radio and consists of: spectrum 
sensing, spectrum analysis and spectrum decision [6]. 

In spectrum sensing, also known as radio-scene analysis [2] 
secondary (unlicensed) users continuously monitor the activi-
ties of primary (licensed) users to detect spectrum holes [7]. 
Spectrum sensing is followed by spectrum analysis, which 
entails channel state information estimation and predictive 
modeling. Spectrum analysis involves capacity estimation 
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based on the interference at the licensed receivers. The channel 
capacity, which can be derived from a number of channel pa-
rameters, is the most important factor for spectrum characteri-
zation [6]. Spectrum analysis is followed by spectrum deci-
sion, in which the cognitive radio determines the frequency 
and bandwidth of transmission. It also determines the data 
rate and transmission mode of the communication. Key tasks 
in spectrum decision are transmit-power control and dynamic 
spectrum management. 

2.2 Transmit-Power Control 
Transmit-power control plays a big role in carrying out spec-
trum sharing. It is one of the parameters that needs to be ad-
justed in order to effect a spectrum sharing and allocation 
strategy. This adjustment is done in such a way that the inter-
ference generated from the secondary users is appropriately 
constrained so as to protect the primary users and to allow as 
many users as possible to share the spectrum [6]. A number of 
spectrum allocation algorithms can be used to effect TPC and, 
by extension, the desired spectrum sharing strategy. Coopera-
tive and non-cooperative, as well as centralized and decentral-
ized techniques have been considered and analyzed in [8]. 
Examples of non-cooperative approaches which have been 
applied include Game Theory [9], [10] and water-filling based 
on information theory [11], [12], [13], [14]. Spectrum allocation 
techniques resulting in overlay and underlay sharing strate-
gies have also been assessed in [15]. 

3 GAME THEORETIC ANALYSIS 
The transmit-power control in a multiuser cognitive radio en-
vironment can be viewed as a game-theoretic problem [2]. 
Game theory describes and analyzes interactive decision situa-
tions and consists of a set of analytical tools that predict the 
outcome of complex interactions among rational entities, 
where rationality demands a strict adherence to a strategy 
based on perceived or measured results [16]. 

3.1 Normal Form Game 
The normal form game is completely defined by specifying the 
following tuple: 
 
 𝛤 = [𝑵,𝑷,𝑼] (1) 
 
where N is the set of players, P is the joint strategy space made 
up of the players’ individual strategy spaces {𝑷𝒊}𝑖∈𝑵 and U is 
the set of utility functions {𝑢𝒊}𝑖∈𝑵. The utility function points to 
the benefit that a player derives from an interaction with other 
players. 

3.2 Nash Equilibrium 
Game-theoretic analysis of cognitive radio is especially moti-
vated by the concept of a Nash Equilibrium (NE). The Nash 
equilibrium is a vector of players’ actions (an action profile) in 
which each action is a best response to the actions of all the 
other players such that no player can increase his utility by 
unilaterally deviating [16]. Thus, a strategy profile p* consti-
tutes a Nash Equilibrium if, for each player i, 
 

 𝑢𝑖(𝑝𝑖∗,𝒑−𝒊∗ ) ≥ 𝑢𝑖(𝑝𝑖 ,𝒑−𝒊∗ ),∀ 𝑝𝑖 ∈  𝑷𝒊 (2) 
where 𝑝𝑖 is the strategy of player i and 𝒑−𝑖 represents the strat-
egies of all the opponents of i. 

3.3 Pareto-Optimality 
The strategy profile 𝑝 is Pareto-superior to the strategy profile 
𝑝′ if for any player 𝑖 ∈ 𝑵: 

 
 𝑢𝑖(𝑝𝑖 ,𝒑−𝒊)  ≥  𝑢𝑖(𝑝𝑖′,𝒑−𝒊′ ) (3) 

 
with strict inequality for at least one player [17]. This means 
that a strategy profile p is said to be Pareto-superior to another 
profile 𝑝′ if the payoff of a player i can be increased by chang-
ing from 𝑝′to 𝑝 without decreasing the payoff of other players. 
The strategy profile 𝑝𝑝𝑜  is Pareto-optimal if there exists no 
other strategy profile that is Pareto-superior to 𝑝𝑝𝑜 . 

4 SYSTEM MODEL 
Transmit power control was modeled as a non-cooperative 
repeated game of infinite horizon, which is a sequence of stage 
games, each stage game being a normal form game; the play-
ers are taken to be myopic. The simulation set-up was for a W-
CDMA network containing a single cell and a varying number 
of users. MATLAB was used to implement the different algo-
rithms and perform the simulations. 

In this model the set of players N consists of the mobile sta-
tions in the network and varies (2 or more users). P consists of 
the possible transmission powers of the mobile stations and 
has a minimum of 0 and a maximum of 2 W, based on the 
power limits of a Class-1 mobile station of a W-CDMA net-
work. The Class-1 mobile stations are among the most widely 
used of the hand-held devices. The utility function for user i is 
specified as [4]: 

 
 𝑢𝑖(𝑝𝑖 ,𝒑−𝑖) =  𝐿𝑅

𝑀𝑝𝑖
(1− 2 × 𝐵𝐵𝐵)𝑀 (4) 

 
where L is the number of information bits in each transmitted 
frame, M is the total number of bits in each frame, R is the 
transmission rate (in bits/second), BER is the bit error rate, pi 
is the transmission power (watts) of player i and 𝒑−𝑖 repre-
sents the transmission powers of the opponents of i. The units 
of the utility function are bits per joule and the utility is there-
fore a measure of the amount of information that can be 
transmitted per joule of energy. In the case of a mobile device, 
a higher utility would mean that the device can transmit more 
information for a given amount of energy stored in the bat-
tery. 

A W-CDMA network with a spreading factor of 256 was 
assumed with each frame having the following parameters: L 
= 100, M = 150 (assuming 1/3- rate coding), R = 15kbps. The 
BER largely depends on the modulation scheme and since the 
modulation scheme used in W-CDMA is QPSK and the bit 
error rate is given by [18]: 

 
 𝐵𝐵𝐵𝑄𝑃𝑆𝐾 = 1

2
�𝑒𝑒𝑒𝑒(√𝛾)−  1

4
 𝑒𝑒𝑒𝑒2(√𝛾)� (5) 

 
where γ is the signal to interference and noise ratio (SINR). 
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The SINR is given by 
 𝛾 =  𝑊

𝑅
 𝑝𝑖ℎ𝑖
∑ 𝑝𝑗ℎ𝑗+ 𝜎2𝑁
𝑗=1,𝑗 ≠𝑖

 (6) 

 
where the bandwidth W = 5 MHz (for W-CDMA), the AWGN 
noise at the receiver 𝜎2 = 2 ×  10−14 𝑊 and hi is the path gain 
from user i to the base station. 

For the path gains, the Extended Hata Model (COST-231) 
[19] is employed. The basic formula for the median propaga-
tion loss in dB given by the Extended Hata Model is  

 
𝐿𝑋𝐻𝑎𝑡𝑎 = 46.33 + (44.9

− 6.55 logℎ1) log𝑑𝑘𝑚
+ 33.9 log𝑓𝑀𝐻𝑧 − 𝑎(ℎ2)− 13.82 logℎ1 + 𝐶 

(7) 
 

where h1 and h2 are the base station and mobile antenna 
heights in meters, respectively, dkm is the link distance in kil-
ometers, and fMHz is the centre frequency in megahertz, a(h2) 
is the antenna height-gain correction factor and is given by 

 
𝑎(ℎ2) = (1.1 log𝑓𝑀𝐻𝑧 − 0.7) ℎ2 − (1.56 log𝑓𝑀𝐻𝑧 − 0.8) (8) 
 
The parameters used for this study are:  
h1 = 30 m (the base station average height) 
h2 = 1.5 m (the mobile station average height) 
fMHz = 1900 MHz 
dkm = random distances from 1 km to 2 km 
C = 0  

C represents a correction factor introduced in the Extended 
Hata Model to improve on the accuracy of the model and is 
taken to be zero for a small – medium city or a suburban area. 

4.1 Convergence to Nash Equilibrium using Iterative 
Water-Filling (IWF) 
The Iterative Water-Filling [2][13][20] technique was imple-
mented in an attempt to converge to the Nash Equilibrium 
(NE) for QPSK a system. Yu [14] showed that in a Gaussian 
multiple access channel with multiple transmit and receive 
antennas, the optimum transmit strategy that maximizes the 
sum capacity can be found by an iterative water-filling proce-
dure, where each user competitively maximizes its own rate 
while treating interference from other users as noise. Iterative 
water-filling has the advantage that it exhibits fast conver-
gence behaviour by virtue of incorporating information on 
both the channel and the RF environment [2]. 

The IWF is implemented by employing the Cournot Ad-
justment Process [21], which is a best response correspondence 
[16] where each player’s strategy is the best response to the 
other players’ strategies. Fig. 1 illustrates the best response 
correspondence employed. 

The step “optimize pi” for sequential play in Fig. 1 is car-
ried out as follows: 
 𝑝𝑖𝑡+1 =  argmax𝑝𝑖 𝑢𝑖(𝑝𝑖 ,𝑝−𝑖

∗ ) (9) 
 

 s.t.     0 ≤  𝑝𝑖  ≤ 𝑝𝑚𝑎𝑥  
 

where 𝑝𝑖𝑡  is the power of player i at iteration t, and 
 

 𝑝−𝑖∗  =

⎩
⎪
⎨

⎪
⎧𝑝−𝑖

𝑡+1, 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜 
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖 𝑘𝑘𝑘𝑘𝑘   

 
𝑝−𝑖𝑡 , 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜 
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖 𝑛𝑛𝑛 𝑘𝑘𝑘𝑘𝑘

 

 
𝑝𝑚𝑎𝑥 = 2 𝑊  
 

 
Fig. 1. IWF using the best response correspondence 
 

4.2 Algorithm for a Pareto-Superior Power Vector 
Goodman [22] illustrated that for the power control game, a 
NE reached may not be Pareto optimal. This is illustrated by 
the fact that if all the powers of all users are simultaneously 
reduced by a factor μ then a power vector can be found which 
is Pareto-superior to the NE can result, such that  

 
 𝑝𝑖

𝑝𝑠 =  𝜇𝑝𝑖 , ∀ 𝑖 ∈ 𝑁 (10) 
 

where 𝑝𝑖
𝑝𝑠 is the Pareto superior power vector. 

 
A Pareto superior outcome to the NE can be achieved using 

the following iterative algorithm: 
 

1. Play the power control game and adjust the powers of the 
players until the NE is reached. 

2. Determine the value of μpeak is as follows: 
a. Reduce μ in small steps from one towards zero. 
b. At each step multiply the power vector at NE by 
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i = N
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μ (a scalar) and calculate the individual utilities 
as well as the sum utility. 

c. Repeat the reduction of μ until a point at which 
the sum utility decreases instead of increasing or 
until a point at which the utility for at least one 
player decreases. 

d. Take the value of μ at that point to be µ𝑝𝑒𝑎𝑘.  
3. Adjust the power vector at NE for all players by multiply-

ing each power by the factor µ𝑝𝑒𝑎𝑘. 
 

 𝑝𝑖
𝑝𝑠 =  µ𝑝𝑒𝑎𝑘𝑝𝑖 , ∀ 𝑖 ∈ 𝑁 (11) 

5 EXPERIMENTAL RESULTS 
5.1 Convergence to NE in Sequential Play 
The system model described in Section 4 was simulated for 
players employing QPSK modulation based on sequential re-
peated play where players have perfect knowledge of the 
strategies and utility functions of the other players. The dis-
tances ranging between 1 km and 2 km from the Base Station 
(BS) were randomly generated then ordered in ascending or-
der. Table 1 and Table 2 show convergence characteristics for 5 
and 10 players. 

In both cases IWF is employed and the play of the game 
converges to a Nash Equilibrium (NE) with NE SINR for all 
players being almost equal. The close SINR of all players gives 
an indication as to the fairness of the NE. 

 
TABLE 1: NE for 5 players 

Player 

distance 
from BS 

(km) 

NE Tx 
Power 

(W) 
NE SINR 

(dB) 
NE Utility (X 

106 b/J) 
1 1.1319 0.0052 5.2223 1.5990 
2 1.2476 0.0074 5.2757 1.1353 
3 1.3304 0.0093 5.2874 0.9053 
4 1.4815 0.0135 5.2539 0.6197 
5 1.5569 0.0161 5.2607 0.5203 

Iterations to reach NE: 2 
Sum Util-
ity 4.7797 

 
TABLE 2: NE for 10 players 

Player 

distance 
from BS 

(km) 

NE Tx 
Power 

(W) 
NE SINR 

(dB) 
NE Utility (X 

106 b/J) 
1 1.1319 0.0057 5.2414 1.4642 
2 1.2476 0.0081 5.2873 1.0394 
3 1.3304 0.0101 5.2569 0.8288 
4 1.4815 0.0148 5.2738 0.5674 
5 1.5569 0.0176 5.2653 0.4764 
6 1.6306 0.0207 5.2616 0.4048 
7 1.7246 0.0253 5.2790 0.3323 
8 1.8104 0.0300 5.2756 0.2800 
9 1.8927 0.0350 5.2625 0.2394 
10 1.9611 0.0397 5.2676 0.2113 

Iterations to reach NE: 3 
Sum Util-
ity 5.8442 

 
Generally, the higher the number of players the higher the 

number of iterations needed to converge to the NE. Fig. 2 
shows the number of iterations taken to reach convergence for 

QPSK in the case of 10 players. For each iteration each player 
maximizes his power to achieve maximum utility. Iterations 
are done until an equilibrium is reached. 

 

 
Fig. 2. Convergence to NE of 10 players using QPSK 

5.2 Convergence to NE in Simultaneous Play  
In simultaneous repeated play the players have knowledge of 
the history of the game but do not know the most recent strat-
egies of the other players until the current stage game is 
played i.e. they have imperfect information. Table 3 shows the 
NE reached and its characteristics for simultaneous play. IWF 
is also used in this case of simultaneous play. 

All the players make their moves simultaneously. This rep-
resents a network environment in which the different trans-
ceivers may communicate simultaneously. For simultaneous 
play 𝑝−𝑖∗  of equation (9) is given as: 

 
 𝑝−𝑖∗ =  𝑝−𝑖𝑡  (12) 

 
Fig. 3 shows the convergence to NE in the case of 10 players 

based on simultaneous play with imperfect information.  
When compared with sequential play it is noted that the 

sequential play and the simultaneous play converge to the 
same equilibrium points. However, simultaneous play with 
imperfect information converges relatively slower. 

 
TABLE 3: NE for 10 players in simultaneous play using 

QPSK 

Player 

distance 
from BS 

(km) 

NE Tx 
Power 

(W) 
NE SINR 

(dB) 
NE Utility (105 

b/J) 
1 1.1319 0.0057 5.2414 1.4642 
2 1.2476 0.0081 5.2873 1.0394 
3 1.3304 0.0101 5.2569 0.8288 
4 1.4815 0.0148 5.2738 0.5674 
5 1.5569 0.0176 5.2653 0.4764 
6 1.6306 0.0207 5.2616 0.4048 
7 1.7246 0.0253 5.2790 0.3323 
8 1.8104 0.0300 5.2756 0.2800 
9 1.8927 0.0350 5.2625 0.2394 
10 1.9611 0.0397 5.2676 0.2113 

Iterations to reach NE: 8 
Sum Utili-
ty 5.8442 
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Fig. 3. Convergence to NE of 10 players in simultaneous 

play using QPSK 

5.3 Pareto Optimality 
As indicated in Section 4.2, if all the powers of all users are 
simultaneously reduced by a factor 𝜇 then a power vector 
which is Pareto superior to the NE may be found. Therefore, 
the NE reached through the IWF is not necessarily Pareto-
optimal. For the QPSK simulation, 𝜇 was varied from 0 to 2 in 
steps of 0.001 and the sum utility was plotted against 𝜇 for 
different numbers of players. Fig. 4 illustrates this in the case 
of 40 players who are all at a distance of 1.2 km from the base 
station so as to present a fairer situation without any players 
being advantaged by virtue of position. 

When 𝜇 = 1, the scenario was that of the NE. Values of μ 
greater than 1 resulted in reduced utilities. However, when μ 
reduced slightly, there was a slight increase in the sum utility 
without a reduction in utility for any one of the players; as 𝜇 
reduced further the utility began to drop rapidly. It was found 
that some strategies exist that are Pareto-superior to the NE. 
The algorithm for a Pareto-superior power vector proposed in 
Section 4 was employed to improve on the NE. In the case of 
40 players 𝜇𝑝𝑒𝑎𝑘 was found to be 0.71 as shown in Fig. 4. 

 

 
Fig. 4. Sum utility against μ for 40 players 
 
The algorithm for a Pareto-superior power vector helped 

achieve a higher overall utility for the entire system while 
guaranteeing that the utility for all players was at least equal 

to their utilities at NE. This is illustrated in Fig. 5, which is a 
case of 60 players spaced out evenly between 1 km and 2 km 
from the base station. Fig. 6 depicts the corresponding power 
levels. The utilities and power vectors at 𝜇𝑝𝑒𝑎𝑘 do not consti-
tute an equilibrium point and would therefore need to be en-
forced otherwise convergence to NE would again result. The 
enforcing mechanism can be done via an implementation of 
punishment in repeated games [17]. 
 

 
Fig. 5. Pareto-optimal utilities for 60 players 

 

 
Fig. 6. Pareto-optimal power levels for 60 players  
 
Fig. 7 illustrates the variation of the Sum Utility at NE and 

at 𝜇𝑝𝑒𝑎𝑘with the number of players for 2 to 60 players all taken 
to be at a distance of 1.2 km from the base station. The Sum 
Utility at 𝜇𝑝𝑒𝑎𝑘is generally higher pointing to the fact that a 
power vector at 𝜇𝑝𝑒𝑎𝑘is Pareto-superior to the power vector of 
the NE. 

It is also noticed that the Sum Utility generally increases as 
the number of players increase. As the players increase fur-
ther, the Sum Utility levels off and begins to drop. This points 
to the fact that increasing the number of players indefinitely 
does not indefinitely increase the sum utility that can be 
drawn from the network. 
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Fig. 7. Variation of Sum Utility with number of players 

 
Fig. 8 illustrates graphically the variation of μpeak with the 

number of players. It was found that the peak in the sum utili-
ty does not occur at the same value of 𝜇 for different numbers 
of players. For higher numbers of players it was observed that 
peak of the utility sum occurred at lower values of μ. As the 
number of players increased the position of 𝜇𝑝𝑒𝑎𝑘moved far-
ther from unity. 

 

 
Fig. 8. Variation of 𝜇𝑝𝑒𝑎𝑘with number of players 

5.4 Equation to determine 𝝁𝒑𝒆𝒂𝒌 
Based on the data of Fig. 8 a curve-fitting procedure was used 
to establish a relationship between 𝜇𝑝𝑒𝑎𝑘and the number of 
players. This resulted in the equation 

 
𝜇𝑝𝑒𝑎𝑘 =  (− 0.0301𝑁3 − 0.4412𝑁2  +  0.0128𝑁 +  9481)10−4 

(13) 
 

where N is the number of players. 
 
Fig. 9 compares the variation of 𝜇𝑝𝑒𝑎𝑘with the number of 

players based on equation (13) and the experimental variation 
of the number of players with 𝜇𝑝𝑒𝑎𝑘. 

To verify equation (13), utilities and power levels for 60 
players, this time at varying distances from the base station, 
were acquired by improving on the NE using the value of 
𝜇𝑝𝑒𝑎𝑘from equation (13). In Fig. 10 and Fig. 11 these utilities 
and powers are compared with those acquired using the algo-
rithm for a Pareto-superior power vector. 

 

 
Fig. 9. Comparison of values of 𝜇𝑝𝑒𝑎𝑘based on measured 

values and developed equation 
 

 
Fig. 10. Utilities for 60 players using different values of μ 
 

 
Fig. 11. Powers for 60 players using different values of μ 
 
 
It is noted that the use of the equation results in a similar 

Pareto-improvement to the case of the algorithm for a Pareto-
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superior power vector. The use of the equation has the ad-
vantage of faster execution as opposed to the use of the algo-
rithm, which is iterative and therefore takes more time to exe-
cute. 

This technique for achieving Pareto-superior power vector 
to the NE offers an improvement to the iterative Algorithm for 
Pareto-Improvement presented in Section 4 as well as to other 
methods such as the method of pricing employed by [4][5] in 
that a direct equation can be employed to arrive at 𝜇𝑝𝑒𝑎𝑘 which 
can then be used to improve on the NE. The technique used in 
[4][5] entails iteratively looking for the optimal pricing factor, 
which can result in a slower process. 

6. CONCLUSION 
Transmit-power control in a cognitive radio network was 
modeled as a non-cooperative game-theoretic problem. The 
iterative water filling algorithm was implemented using the 
best response to the previous play for a system employing 
QPSK and was shown to converge to a Nash Equilibrium. The 
speed of convergence in the case of sequential play was com-
pared to the speed of convergence in the case of simultaneous 
play. It was found that sequential play converges to the Nash 
Equilibrium faster than simultaneous play. 

The Pareto efficiency of the Nash Equilibrium arrived at 
was also assessed. It was seen that the equilibrium does not 
represent a Pareto-optimal power vector. An algorithm for 
Pareto-Improvement was developed and implemented. The 
algorithm helped achieve a higher overall utility as compared 
to the Nash Equilibrium for the entire system while guarantee-
ing that the utility for all players was at least equal to their 
utilities at the Nash Equilibrium. Based on the results of the 
algorithm an equation useful for directly finding the Pareto-
superior power vector was then developed. This method was 
seen to offer improvements to other methods used for finding 
Pareto-superior power vectors to the Nash Equilibrium. 

The possibility of arriving at the Nash Equilibrium and 
achieving Pareto-improvements on it facilitate the implemen-
tation of distributed transmit-power control in cognitive radio 
networks; higher utility means more data transmitted per 
joule of battery energy. It helps in the deployment of networks 
such as ad hoc networks, sensor networks and data networks 
in general. 

Future work may entail incorporation of the equation de-
veloped into the utility function and the implementation of 
punishment to enforce the Pareto-superior power vector. A 
study of the use of stochastic learning and integration of learn-
ing and iterative water filling to improve on the utility is also 
worth undertaking. 
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